Real-Time Adaptive Hand Motion Recognition Using a Sparse Bayesian Classifier
نویسندگان
چکیده
An approach to increase adaptability of a recognition system, which can recognise 10 elementary gestures and be extended to sign language recognition, is proposed. In this work, recognition is done by firstly extracting a motion gradient orientation image from a raw video input and then classifying a feature vector generated from this image to one of the 10 gestures by a sparse Bayesian classifier. The classifier is designed in a way that it supports online incremental learning and it can be thus re-trained to increase its adaptability to an input captured under a new condition. Experiments show that the accuracy of the classifier can be boosted from less than 40% to over 80% by re-training it using 5 newly captured samples from each gesture class. Apart from having a better adaptability, the system can work reliably in real-time and give a probabilistic output that is useful in complex motion analysis.
منابع مشابه
Real-time Interpretation of Hand Motions using a Sparse Bayesian Classifier on Motion Gradient Orientation Images
An approach to recognise 10 elementary gestures is proposed and it can be applied to sign language recognition. In this work, a motion gradient orientation image is extracted directly from a raw video input and transformed to a motion feature vector. This feature vector is then classified into one of the 10 elementary gestures by a sparse Bayesian classifier. A training set of 628 samples and a...
متن کاملFace Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملReal-Time Hand Gesture Recognition Based on Sparse Positional Data
Low cost devices which provide depth data as well as images (RGB-D), such as the Kinect, have become extremely popular of late. A compact and accurate device launched recently draws attention: the Leap Motion. But despite its high acquisition rate and precision, the data it provides is extremely sparse. In this paper we present a methodology for gesture recognition capable of dealing with the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005